
Performance-Energy Aggregate metric based
Scheduler (PEAS) for Smartphones

Rashmi Devi, Preeti Sharma

Department of Computer Science and Engineering

Shri Ram College of Engineering & Management, Delhi-Mathura Road (NH-2)

Palwal, Haryana, India

Abstract— Since the introduction of Cyber Foraging, there has
been a need for a scheme that partitions computation among
client and server for optimal performance without
compromising energy consumption. In previous schemes,
scheduler was installed on server resulting in low adaptability
to changing network and local computational resources.
MARS, the first adaptive, online and lightweight scheduler,
achieved better performance as well as energy savings over
these schemes by enhancing adaptability due to its installation
on mobile device. We introduce PEAS (Performance-Energy
Aggregate metric based Scheduler), an improved version of
MARS, which is even more lightweight hence more adaptable.
PEAS operates on the principle: keep both server and the
client fully utilized at all times such that energy constraints are
inherently taken care of. A thorough evaluation of PEAS over
wide range of applications and network conditions is
presented. We propose modifications in our scheduler to
tackle high energy consumption for poor networks.
Converging trend in performance of different schemes with
network improvement is also demonstrated.

Keywords— Pervasive computing, Cyber foraging, Client-
server, Adaptive, RPC, Scheduler

I. INTRODUCTION

Mobile computing has become quite popular in last
decade. Mobile computing has gone through leaps and
bounds since its introduction in past two decades. However,
technological advances had little impact; it is still speed and
energy limited because of slow mobile processors and
battery capacity. Wireless networks such as 3G, Wi-Fi
introduces the possibility of using ample computing
resources via migration of resource intensive computation
tasks to external powerful server resources. Various
methods since the birth of pervasive computing [1] had
evolved and have been used for remote execution. Earlier
works solely uses remote execution for performing given
tasks irrespective of other parameters. However this
strategy is not always beneficial. In poor network
conditions, network power overhead consumes high amount
of battery resources also high latency increases the total
execution time. We also witness from above case that
energy savings and run-time depends heavily on network
conditions, computation task and server load. This calls for
smart remote execution methods which consider local
processor as a resource. The works of [2], [3], and [4]

address the above problem and include local processor as a
resource. These methods called for optimization of
distribution of tasks to mobile and server resources the
variable being network parameters. Several works for
example [5] has been done either on energy or on
performance. All these new methods were based on static
client-server partition. The important network parameters
such as network congestion, upload bandwidth, download
bandwidth, latency etc. are highly variable in nature. These
methods did not account for high variability of offloading
parameters. However, improved methods such as [6], [7]
delve into this problem up to some extent by introducing
dynamic methods of pervasive computing. The work of
MAUI [7] in the league of client server partitioning
methods is quite remarkable in terms of energy saving and
performance also to some extent. The above work is chosen
as benchmark for static client server method in this work
for comparison.

Our scheduler primarily deals with execution of remotely
executable RPCs (Remote Procedural Calls) which are
predefined by developer according to the application
requirement. High degree of randomness in networking
parameters calls for dynamicity in scheduling of remotely
executable RPC’s. As that would be much closer to real
time scenario which is being encountered while offloading
to server resources. In his regard, a novel method was
introduced by Cidon and Tomer [8]. In their method,
scheduler was installed on mobile device itself thus
enabling scheduling decisions to be taken on mobile device
itself instead of being pre-programmed by developer (static
client server method) or by VM migration method. In VM
migration method [9], [10] remote execution is conducted
by migrating a VM from the mobile device to a remote
server, or emulating the entire mobile operating system on
the server. However, as discussed in related works section
of MARS [8] due to adaptability issues VM migration is not
preferred in our algorithm.

The introduction of scheduler on mobile fine grains the
scheduling decisions and better results were obtained than
prevalent state of the art methods. However, the weight of
scheduler is of primary concern for installing it on mobile
device. The algorithm used by [8] follows greedy approach
to avoid complicated computations thus keeping scheduler
to be light weight and adaptive. Our work is a continuation

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4627

in this direction. We aim towards optimizing the greedy
approach being followed by MARS and we present a better
algorithm which results in more adaptive, more light
weighted scheduler, better speedup and better energy
savings. The work of [8] is somewhat application specific
which again requires a rigorous analysis for wide variety of
applications over various networks to ascertain its utility.
Thus, following above idea we have analyzed various
application and presented them in form of abstraction for
generalizing the results. Our focus is on wide applicability
of our algorithm over different networks such as 3G, Wi-Fi
etc. We have also analyzed for future networks conditions
such as 4G and improved Wi-Fi.

II. THE PEAS ALGORITHM

The problem at hand is to minimize execution time and
energy consumption of the given set of remotely executable
RPCs. As mentioned previously, modern processors feature
multiple threads and cores. For supporting such
architectures in a rapidly varying wireless environment,
dynamic remote execution systems need to be adaptive,
online and lightweight. These criteria are inherently taken
care of by the structure of PEAS. PEAS sorts the candidate
RPCs for remote execution in a priority queue. A
performance-energy metric, called EPOR (Energy-
Performance Offload Rank) is used for sorting the queue.
EPOR estimates energy savings and speedup gained by
offloading the RPC. At any moment, we expect the RPC at
the top of the queue to be the best candidate for offloading
as it promises highest energy savings and speedup gain.
Similarly, the RPC at the bottom of the queue with lowest
EPOR is expected to be the best candidate for local
execution. The EPOR metric arranges RPCs in ascending
order of remote execution so whenever remote resource is
available it offloads RPC present at the top of the queue and
RPC at the bottom of the queue is locally executed. Before
every scheduling decision, the queue is resorted by
updating its EPOR metric to adapt to changing network and
CPU resources. Since energy considerations are modelled
into EPOR metric, this scheduling scheme should ensure
energy savings along with performance gain.

A. RPC Model

A remote execution RPC is the smallest unit of remote
execution. It is assumed that remote execution RPCs are
parts of a program that are defined by the programmer to be
considered as candidates for remote execution. These units
require a significant and finite amount of time to execute
locally (hundreds of milliseconds or more). Remote
execution RPCs are assumed to be functionally idempotent
and independent. They do not use any shared memory and
synchronization mechanisms, and have no inter-thread
dependencies. Each remote execution RPC is executed by
the server in a separate thread i.e. the server can run large
(ideally infinite) number of RPCs in parallel.

B. The EPOR Metric

EPOR metric is used by PEAS to sort RPCs in a priority
queue. The idea behind this metric is to model both
performance and energy criteria in a single parameter

making PEAS extremely lightweight and easy to implement.
EPOR metric is defined below:

MobileExecutionTime
EPOR

ServerExecutionTime CommunicationTime

 MobileExecutionTime DevicePower

Re moteExecutionEnergy

 (1)

InputSize
CommunicationTime

UploadBandwidth

OutputSize
RTT

DownloadBandwidth
 (2)

InputSize
Re moteExecutionEnergy RTT UploadPower

UploadBandwidth

 OutputSize
RTT DownloadPower

DownloadBandwidth

 (3)

The first term on RHS of equation (1) accounts for
speedup on offloading i.e. local execution time over remote
execution time while second term is the estimated mobile
energy consumption of executing a RPC locally over its
remote execution. It ensures that PEAS should remotely
execute RPCs without compromising the device’s energy
consumption. This model of priority metric EPOR takes
into account several dynamic factors; the network
bandwidth, latency, the computation task and the local
execution time on the mobile device. However, it does not
take into account dependencies among RPCs e.g. whether
there are any subsequent functions waiting for the RPC to
complete.

In order to adapt to changing network conditions, PEAS
periodically profiles the network and CPU. Before a
scheduling decision, PEAS checks the new status of the
network and mobile resources subsequently updates the
EPOR of all the RPCs and resorts the queue according to
the new EPOR values. When a new remote execution RPC
enters the queue, its position in the queue is determined
according to its EPOR.

C. PEAS Scheduler

PEAS algorithm operates on following principle:
“Given a set of remotely executable RPCs, keep both the

network and the local CPU fully utilized at all times such
that RPCs with high EPOR are executed remotely and
RPCs with low EPOR are executed locally”

Every time a scheduling decision needs to be made,
scheduler calls the PEAS algorithm given on next page.
TopOfQueue and BottomOfQueue refer to the RPCs at the
top and bottom of the queue respectively. saveRPCState()
saves the RPC’s data, so that if the network becomes
disconnected, PEAS can resume the execution of the RPC
locally. WaitForResource() is called when none of the
resources is

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4628

PEAS Algorithm

 1: if Network.isFree() AND Mobile.isBusy() then
 2: saveRPCState(TopOfQueue)
 3: offload(TopOfQueue)
 4: else if Mobile.isFree() AND Network.isBusy() then
 5: runLocally(BottomOfQueue)
 6: else if Network.isFree() AND Mobile.isFree() then
 7: saveRPCState(TopOfQueue)
 8: offload(TopOfQueue)
 9: else
10: WaitForResource
11: end if

available for executing the RPC then it waits in the queue
until next resource is available. Network.isFree() refers to
the availability of serial communication wireless network
for migration of RPCs.

The above algorithm always keeps both local CPU
(Mobile) and Network busy thus enabling full utilization of
resources unlike MARS which requires an additional
energy criterion to be satisfied before directing an RPC for
remote or local execution. Thus performance of PEAS is
bound to be better than that of MARS. Since EPOR
modelling took into account energy considerations, the
device energy consumption should never be unreasonably
high compared to MARS or MAUI. Computational weight
of the scheduler and its adaptability to changing network
scenario go hand in hand. PEAS should therefore
demonstrate better adaptability than MARS and hence other
schedulers.

It is easy to apply our scheduler to multi-core processors.
Each time a core becomes free, the scheduler pops a remote
execution RPC from the bottom of the queue. We do not
model multi-core features such as shared caches and thread
migration among cores.

III. EVALUATION

In this section, we evaluate PEAS’s ability to improve
the performance and energy savings of smartphone
applications. Simulation methodology is described in
section III A.

A. Simulation Methodology

We aim at carrying out a thorough evaluation of our
scheduler that spans wide range of applications and network
conditions. For this we used four types of applications
based on associated communication and computation costs.
To cover varied network scenarios, we used three different
networks.

We categorized applications on the basis of their
communication and computation costs. For an application
the time consumed in transmitting data over network for
remote execution, called communication cost, is considered
as low and high. Similarly, the computation overhead or
total execution time of an application, called computation
cost, is considered as medium and high. This gives four
different applications having:

1. Low communication cost and Medium computation
cost (LM),

2. Low communication cost and High computation cost
(LH),

3. High communication cost and Medium computation
cost (HM) and

4. High communication cost and High computation cost
(HH)

These abstractions cover most of the applications’ space.
Note that the comparison of computation and
communication costs is with respect to the
efficiency/capacity of the computing platform (both the
mobile and the server) and of the wireless network
protocols and transceivers. In our framework, applications
that incur low computation cost are not considered as they
can be executed on the mobile device itself.

First consider applications that incur high computation
costs. The associated communication cost can be low or
high. For low communication cost applications, the
relatively small size of RPCs (up to about 30 KB) allows
user to offload RPCs with minimal transfer time and low
power overhead. However, their computation is complex
and resource intensive thus favoring remote execution.
Applications requiring complex mathematical calculations
for e.g. finding prime numbers [11], encrypt-decrypt
applications fall under this category. Second type of
applications in high computation cost category are those
with high communication cost e.g. video editing which
consists of RPCs of the order of hundreds of kilobytes and
also incurs high computation overhead. For such
applications, network parameters: bandwidth and latency
play critical role in scheduling decisions. Availability of
good network conditions will promote offloading of RPCs.

Second set consists of moderate computation cost
applications. Again, the associated communication cost can
be low or high. Applications such as face recognition,
augmented reality are considered to be high communication
cost and medium computation cost applications having
RPCs’ size over about 30KB and small server execution
time of the order of tens of milliseconds. Distributed voice
recognition [12] and secure communications [13] are good
examples of applications having low communication cost
and moderate computation cost.

We considered three different networks: Poor, Average
and Good. Corresponding data used in simulations is given
in the following table:

TABLE I
NETWORK PROPERTIES

Parameters Poor
Network

Average
Network

Good
Network

Bandwidth Range
10-100
KBps

50-500
KBps

100-1000
KBps

Latency/RTT
100 ms /
200ms

25 ms /
50ms

10 ms /
20 ms

Network Idle Power
Overhead

0.3 W 0.0005 W ~0 W

Power Upload
Overhead

2 W 0.2 W 0.1 W

Power CPU Idle 1.5 W 1.5 W 1.5 W
Computation Overhead 0.1 W 0.1 W 0.1 W

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4629

TABLE II
RUNTIMES FOR GOOD NETWORK

Application

Runtime (in Seconds) % Improvement in Runtime over
Local MAUI MARS PEAS MAUI MARS

LM 2.52 0.3049 0.2903 0.2898 4.952443 0.172236
LH 100 2.4276 2.3036 2.3015 5.194431 0.091162
HM 5.04 1.363 1.107 1.05 22.96405 5.149051
HH 37.5 3.83563 3.49029 3.47826 9.317113 0.344671

TABLE III
RUNTIMES FOR AVERAGE NETWORK

Application

Runtime (in Seconds) % Improvement in Runtime over
Local MAUI MARS PEAS MAUI MARS

LM 2.52 0.6011 0.6159 0.514 14.4901 16.54489
LH 100 5.21 4.68 4.67 10.36468 0.213675
HM 5.04 2.261 1.966 1.773 21.58337 9.816887
HH 37.5 7.78747 6.44144 6.33168 18.694 1.703967

TABLE IV
RUNTIMES FOR BAD NETWORK

Application

Runtime (in Seconds) % Improvement in Runtime over
Local MAUI MARS PEAS MAUI MARS

LM 2.52 2.52 2.52 1.42 43.65079 43.65079
LH 100 18.11 24.67 16.61 8.282717 32.67126
HM 5.04 5.04 5.04 3.867 23.27381 23.27381
HH 37.5 35.9955 24.4451 18.185 49.4798 25.60881

TABLE V
ENERGIES FOR GOOD NETWORK

Application

Energy (in Seconds) % Improvement in Energy over
Local MAUI MARS PEAS MAUI MARS

LM 4.032 0.48355 0.48006 0.47918 0.903733 0.18331
LH 160 3.8602 3.8671 3.8636 -0.08808 0.090507
HM 8.064 2.203 1.858 1.767 19.79119 4.89774
HH 60 6.11904 5.80735 5.86837 4.096558 -1.05074

TABLE VI
ENERGIES FOR AVERAGE NETWORK

Application

Energy (in Seconds) % Improvement in Energy over
Local MAUI MARS PEAS MAUI MARS

LM 4.03326 1.003 1.051 0.889 11.3659 15.41389
LH 160.05 8.677 8.216 8.206 5.428143 0.121714
HM 8.066 3.824 3.411 3.124 18.30544 8.413955
HH 60.01875 13.1432 11.4265 11.2567 14.35343 1.486019

TABLE VII
ENERGIES FOR BAD NETWORK

Application

Energy (in Seconds) % Improvement in Energy over
Local MAUI MARS PEAS MAUI MARS

LM 4.788 4.788 4.788 4.375 8.625731 8.625731
LH 190 57.82 64.545 53.277 7.857143 17.45759
HM 9.576 9.576 9.576 13.527 -41.2594 -41.2594
HH 71.25 70.5795 60.1409 65.0841 7.786114 -8.21936

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4630

One can easily relate these networks to low bandwidth
3G, average Wi-Fi and improved Wi-Fi or 4G respectively.

We borrowed device, network and application data from
[8]. We used this data and extended it to formulate above
mentioned abstractions of devices, networks and
applications keeping them realistic. An application consists
of some number of independent tasks each having 6
sequentially dependent stages (linear multistage model
[11]).

All the simulation results shown here are compared with
best static partitioning MAUI and the previous best
dynamic, adaptive mobile installed scheduler, MARS.

B. Results

Based on our simulation methodology, all four sets of
applications were simulated over diverse networking
conditions modelled as three networks namely good,
average and poor. Comparisons are drawn with prevalent
methods such as local execution, best static portioning
(MAUI) and MARS for execution time and energy
consumption. Consistency is maintained in simulations with
respect to device’s computational power and computational
load for each algorithm and over different networks. In
subsequent sections, network based simulation results
shown in tables II-VII are discussed.

1) Good Network: The results obtained by simulating
applications over good networks (tables II and V) exhibit
interesting observations. The convergence in performance
and energy savings of different scheduling algorithms is
observed. The explanation lies in the fact that remote
execution is facilitated by good networking conditions.
Therefore, we could assert that most of the RPC’s are
scheduled for remote execution. However, in high
communication cost and medium computation cost
applications, increased use of local CPU provide PEAS
23% speedup gain over MAUI. The limited use of mobile
CPU in other applications results in marginal speedup gain
for PEAS.

2) Average Network: In average networks, due to low
offload power overhead, energy consumption largely
depends upon total runtime of the computational task. It
results in making remote execution an energy efficient
choice for the execution of RPCs. Therefore, both
performance gain and energy savings favor offloading
(tables III and VI). PEAS, being performance centric
scheduler algorithm, also becomes energy efficient due to
low offload power overhead. Speed gain up to 16% and
22% is observed for PEAS over MARS and MAUI
respectively. Similar trend is followed in energy savings;
varying up to 15% and 18% for PEAS over MARS and
MAUI respectively.

3) Bad Network: PEAS is primarily designed for
performance factor which is being exemplified by speedup
results (tables IV and VII) shown by PEAS over MAUI (up
to 50% speedup) and MARS (up to 44%). It is apparent
from above results that PEAS prevails in poor networking
conditions by fully utilizing available resources. These
outcomes also indicate that PEAS is best suited for
performance centric applications which require higher
refresh rates such as video games. As discussed earlier,

PEAS being primarily designed for speedup its energy
consumption needs to be scrutinized due to presence of
high upload network power over-head.

In high communication and medium computation cost
applications, high energy consumption is observed. This is
easier to understand as high communication cost would
incur high energy consumption due to upload network
power overhead. Also, medium computation cost would not
allow PEAS to draw maximum benefits from remote
execution resulting in extensive battery usage. However,
except for high communication cost and medium
computation cost case energy results are not drastically
deteriorating in nature. Furthermore, in some applications
energy savings up to 17% and 9% is observed for PEAS
over MARS and MAUI respectively.

To satiate these needs, we devised battery usage modes
namely high performance mode and power saver mode
based on common prevalence of these modes in computers,
laptops etc. Mode can be manually chosen by user or
preconfigured in design. The user chooses the available
battery mode catering to his/her need. High performance
mode is PEAS algorithm only. Power saver mode requires
high energy savings without catering to performance
requirements. Selection of this mode activates energy aware
offloading. This is easily implemented with insertion of just
one more check in scheduling algorithm before every
offloading decision. It should be noted that we performed
all simulations assuming high performance mode.

IV. CONCLUSIONS

This work introduces PEAS, a single metric based,
extremely light-weight and online scheduler for multi-
threaded systems. The scheduler is easily extendable to
multi-core clients. Our simulation results show that PEAS
gives up to 50% better performance and energy savings
over MAUI and MARS. The fact that PEAS maintains its
superiority over wide range of applications and networks is
also established from simulations. We also demonstrated
converging trend in results of all schemes with
improvement in network.

REFERENCES
[1] Satyanarayanan M., "Pervasive computing: vision and challenges,

"Personal Communications, IEEE, vol.8, no.4, pp.10-17, Aug 2001
doi: 10.1109/98.943998

[2] A.Messer, I.Greenberg, P.Bernadat, D.Milojicic, D.Chen,
T.J.Giuli ,and X.Gu. Towards a Distributed Platform for Resource-
Constrained Devices. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), pp.43-
5,2-5, Vienna, Austria, July 2002.

[3] M.Tatsubori, T.Sasaki, S.Chiba and K.Itano. A Bytecode Translator
for Distributed Execution of ÓLegacyÓ Java Software. In
Proceedings of the European Conference on Object- Oriented
Programming (ECOOP) ,LN CS 2072, pp.236-255, Sprinter-Verla,
2001.

[4] E.Tilevich and Y.Smaragdakis, J-Orchestra: Automatic Java
application partitioning. In Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP) , LN CS
237 4, pp.17 8-204, Sprinter-Verla, 2002.

[5] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving
Portable Computer Battery Power through Remote Process
Execution, ”Mobile Computing and Comm. Rev., vol. 2, no. 1, pp.
19-26, 1998

[6] Hens, Raf; Boone, Bas; de Turck, Filip; Dhoedt, Bart; "Runtime
Deployment Adaptation for Resource Constrained Devices,"

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4631

Pervasive Services, IEEE International Conference on , vol., no.,
pp.335-340, 15-20 July 2007 doi: 10.1109/PERSER.2007.4283936

[7] Cuervo, E., Balasubramanian, A., ki Cho, D.,Wolman, A., Saroiu,
S., Chandra, R., and Bahl, P.Maui: making smartphones last longer
with code offload. In MobiSys (2010), pp. 49–62.

[8] Asaf Cidon, Tomer M. London, Sachin Katti, Christos Kozyrakis,
and Mendel Rosenblum. 2011. MARS: adaptive remote execution
for multi-threaded mobile devices. In Proceedings of the 3rd ACM
SOSP Workshop on Networking, Systems, and Applications on
Mobile Handhelds (MobiHeld '11). ACM, New York, NY, USA.

[9] Kirsch, C. M., and Heiser, G., Eds. European Conference on
Computer Systems, Proceedings of the Sixth European conference
on Computer systems, EuroSys 2011, alzburg, Austria - April 10-13,
2011 (2011), ACM.

[10] Chun, B.-G., Ihm, S., Maniatis, P., and Naik, M. Clonecloud:
Boosting mobile device applications through cloud clone execution.
CoRR abs/1009.3088 (2010).

[11] Gitzenis, S.; Bambos, N.; , "Joint Task Migration and Power
Management in Wireless Computing," Mobile Computing, IEEE
Transactions on , vol.8, no.9, pp.1189-1204, Sept. 2009
doi: 10.1109/TMC.2009.34

[12] B. Delaney, T. Simunic, and N. Jayant, “Power Aware Distributed
Speech Recognition for Wireless Mobile Devices,” IEEE Design &
Test, vol. 22, no. 1, pp. 39-49, Jan. 2005.

[13] L. Yuan and G. Qu, “Design Space Exploration for Energy-Efficient
Secure Sensor Network,” Proc. IEEE Int’l Conf. Application-
Specific Systems, Architectures and Processors, pp. 88-97, 2002.

Rashmi Devi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4627-4632

www.ijcsit.com 4632

