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Abstract— Since the introduction of Cyber Foraging, there has 
been a need for a scheme that partitions computation among 
client and server for optimal performance without 
compromising energy consumption. In previous schemes, 
scheduler was installed on server resulting in low adaptability 
to changing network and local computational resources. 
MARS, the first adaptive, online and lightweight scheduler, 
achieved better performance as well as energy savings over 
these schemes by enhancing adaptability due to its installation 
on mobile device. We introduce PEAS (Performance-Energy 
Aggregate metric based Scheduler), an improved version of 
MARS, which is even more lightweight hence more adaptable. 
PEAS operates on the principle: keep both server and the 
client fully utilized at all times such that energy constraints are 
inherently taken care of. A thorough evaluation of PEAS over 
wide range of applications and network conditions is 
presented. We propose modifications in our scheduler to 
tackle high energy consumption for poor networks. 
Converging trend in performance of different schemes with 
network improvement is also demonstrated. 

 
Keywords— Pervasive computing, Cyber foraging, Client-
server, Adaptive, RPC, Scheduler 

I. INTRODUCTION 

Mobile computing has become quite popular in last 
decade. Mobile computing has gone through leaps and 
bounds since its introduction in past two decades. However, 
technological advances had little impact; it is still speed and 
energy limited because of slow mobile processors and 
battery capacity. Wireless networks such as 3G, Wi-Fi 
introduces the possibility of using ample computing 
resources via migration of resource intensive computation 
tasks to external powerful server resources. Various 
methods since the birth of pervasive computing [1] had 
evolved and have been used for remote execution. Earlier 
works solely uses remote execution   for performing given 
tasks irrespective of other parameters. However this 
strategy is not always beneficial. In poor network 
conditions, network power overhead consumes high amount 
of battery resources also high latency increases the total 
execution time. We also witness from above case that 
energy savings and run-time depends heavily on network 
conditions, computation task and server load. This calls for 
smart remote execution methods which consider local 
processor as a resource. The works of [2], [3], and [4] 

address the above problem and include local processor as a 
resource. These methods called for optimization of 
distribution of tasks to mobile and server resources the 
variable being network parameters. Several works for 
example [5] has been done either on energy or on 
performance. All these new methods were based on static 
client-server partition. The important network parameters 
such as network congestion, upload bandwidth, download 
bandwidth, latency etc. are highly variable in nature. These 
methods did not account for high variability of offloading 
parameters. However, improved methods such as [6], [7] 
delve into this problem up to some extent by introducing 
dynamic methods of pervasive computing. The work of 
MAUI [7] in the league of client server partitioning 
methods is quite remarkable in terms of energy saving and 
performance also to some extent. The above work is chosen 
as benchmark for static client server method in this work 
for comparison. 

Our scheduler primarily deals with execution of remotely 
executable RPCs (Remote Procedural Calls) which are 
predefined by developer according to the application 
requirement. High degree of randomness in networking 
parameters calls for dynamicity in scheduling of remotely 
executable RPC’s. As that would be much closer to real 
time scenario which is being encountered while offloading 
to server resources. In his regard, a novel method was 
introduced by Cidon and Tomer [8]. In their method, 
scheduler was installed on mobile device itself thus 
enabling scheduling decisions to be taken on mobile device 
itself instead of being pre-programmed by developer (static 
client server method) or by VM migration method. In VM 
migration method [9], [10] remote execution is conducted 
by migrating a VM from the mobile device to a remote 
server, or emulating the entire mobile operating system on 
the server. However, as discussed in related works section 
of MARS [8] due to adaptability issues VM migration is not 
preferred in our algorithm. 

The introduction of scheduler on mobile fine grains the 
scheduling decisions and better results were obtained than 
prevalent state of the art methods. However, the weight of 
scheduler is of primary concern for installing it on mobile 
device. The algorithm used by [8] follows greedy approach 
to avoid complicated computations thus keeping scheduler 
to be light weight and adaptive. Our work is a continuation 
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in this direction. We aim towards optimizing the greedy 
approach being followed by MARS and we present a better 
algorithm which results in more adaptive, more light 
weighted scheduler,  better speedup and better energy 
savings. The work of [8] is somewhat application specific 
which again requires a rigorous analysis for wide variety of 
applications over various networks to ascertain its utility. 
Thus, following above idea we have analyzed various 
application and presented them in form of abstraction for 
generalizing the results. Our focus is on wide applicability 
of our algorithm over different networks such as 3G, Wi-Fi 
etc. We have also analyzed for future networks conditions 
such as 4G and improved Wi-Fi. 

II. THE PEAS ALGORITHM 

The problem at hand is to minimize execution time and 
energy consumption of the given set of remotely executable 
RPCs. As mentioned previously, modern processors feature 
multiple threads and cores. For supporting such 
architectures in a rapidly varying wireless environment, 
dynamic remote execution systems need to be adaptive, 
online and lightweight. These criteria are inherently taken 
care of by the structure of PEAS. PEAS sorts the candidate 
RPCs for remote execution in a priority queue. A 
performance-energy metric, called EPOR (Energy-
Performance Offload Rank) is used for sorting the queue. 
EPOR estimates energy savings and speedup gained by 
offloading the RPC. At any moment, we expect the RPC at 
the top of the queue to be the best candidate for offloading 
as it promises highest energy savings and speedup gain. 
Similarly, the RPC at the bottom of the queue with lowest 
EPOR is expected to be the best candidate for local 
execution. The EPOR metric arranges RPCs in ascending 
order of remote execution so whenever remote resource is 
available it offloads RPC present at the top of the queue and 
RPC at the bottom of the queue is locally executed. Before 
every scheduling decision, the queue is resorted by 
updating its EPOR metric to adapt to changing network and 
CPU resources. Since energy considerations are modelled 
into EPOR metric, this scheduling scheme should ensure 
energy savings along with performance gain. 

A. RPC Model 

A remote execution RPC is the smallest unit of remote 
execution. It is assumed that remote execution RPCs are 
parts of a program that are defined by the programmer to be 
considered as candidates for remote execution. These units 
require a significant and finite amount of time to execute 
locally (hundreds of milliseconds or more). Remote 
execution RPCs are assumed to be functionally idempotent 
and independent. They do not use any shared memory and 
synchronization mechanisms, and have no inter-thread 
dependencies. Each remote execution RPC is executed by 
the server in a separate thread i.e. the server can run large 
(ideally infinite) number of RPCs in parallel. 

B. The EPOR Metric 

EPOR metric is used by PEAS to sort RPCs in a priority 
queue. The idea behind this metric is to model both 
performance and energy criteria in a single parameter 

making PEAS extremely lightweight and easy to implement. 
EPOR metric is defined below: 
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The first term on RHS of equation (1) accounts for 
speedup on offloading i.e. local execution time over remote 
execution time while second term is the estimated mobile 
energy consumption of executing a RPC locally over its 
remote execution. It ensures that PEAS should remotely 
execute RPCs without compromising the device’s energy 
consumption. This model of priority metric EPOR takes 
into account several dynamic factors; the network 
bandwidth, latency, the computation task and the local 
execution time on the mobile device. However, it does not 
take into account dependencies among RPCs e.g. whether 
there are any subsequent functions waiting for the RPC to 
complete.  

In order to adapt to changing network conditions, PEAS 
periodically profiles the network and CPU. Before a 
scheduling decision, PEAS checks the new status of the 
network and mobile resources subsequently updates the 
EPOR of all the RPCs and resorts the queue according to 
the new EPOR values. When a new remote execution RPC 
enters the queue, its position in the queue is determined 
according to its EPOR. 

C. PEAS Scheduler 

PEAS algorithm operates on following principle: 
“Given a set of remotely executable RPCs, keep both the 

network and the local CPU fully utilized at all times such 
that RPCs with high EPOR are executed remotely and 
RPCs with low EPOR are executed locally” 

Every time a scheduling decision needs to be made, 
scheduler calls the PEAS algorithm given on next page. 
TopOfQueue and BottomOfQueue refer to the RPCs at the 
top and bottom of the queue respectively. saveRPCState() 
saves the RPC’s data, so that if the network becomes 
disconnected, PEAS can resume the execution of the RPC 
locally. WaitForResource() is called when none of the 
resources is  
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PEAS Algorithm 
 

  1: if Network.isFree() AND Mobile.isBusy() then 
  2:  saveRPCState(TopOfQueue) 
  3:  offload(TopOfQueue) 
  4: else if Mobile.isFree() AND Network.isBusy() then 
  5:  runLocally(BottomOfQueue) 
  6: else if Network.isFree() AND Mobile.isFree() then 
  7:  saveRPCState(TopOfQueue) 
  8:  offload(TopOfQueue)  
  9: else 
10:  WaitForResource 
11: end if 
 

available for executing the RPC then it waits in the queue 
until next resource is available. Network.isFree() refers to 
the availability of serial communication wireless network 
for migration of RPCs. 

The above algorithm always keeps both local CPU 
(Mobile) and Network busy thus enabling full utilization of 
resources unlike MARS which requires an additional 
energy criterion to be satisfied before directing an RPC for 
remote or local execution. Thus performance of PEAS is 
bound to be better than that of MARS. Since EPOR 
modelling took into account energy considerations, the 
device energy consumption should never be unreasonably 
high compared to MARS or MAUI. Computational weight 
of the scheduler and its adaptability to changing network 
scenario go hand in hand. PEAS should therefore 
demonstrate better adaptability than MARS and hence other 
schedulers. 

It is easy to apply our scheduler to multi-core processors. 
Each time a core becomes free, the scheduler pops a remote 
execution RPC from the bottom of the queue. We do not 
model multi-core features such as shared caches and thread 
migration among cores. 

III. EVALUATION 

In this section, we evaluate PEAS’s ability to improve 
the performance and energy savings of smartphone 
applications. Simulation methodology is described in 
section III A. 

A. Simulation Methodology 

We aim at carrying out a thorough evaluation of our 
scheduler that spans wide range of applications and network 
conditions. For this we used four types of applications 
based on associated communication and computation costs. 
To cover varied network scenarios, we used three different 
networks. 

We categorized applications on the basis of their 
communication and computation costs. For an application 
the time consumed in transmitting data over network for 
remote execution, called communication cost, is considered 
as low and high. Similarly, the computation overhead or 
total execution time of an application, called computation 
cost, is considered as medium and high. This gives four 
different applications having: 

1. Low communication cost and Medium computation 
cost (LM), 

2. Low communication cost and High computation cost 
(LH),       

3. High communication cost and Medium computation 
cost (HM) and 

4. High communication cost and High computation cost 
(HH) 

These abstractions cover most of the applications’ space. 
Note that the comparison of computation and 
communication costs is with respect to the 
efficiency/capacity of the computing platform (both the 
mobile and the server) and of the wireless network 
protocols and transceivers. In our framework, applications 
that incur low computation cost are not considered as they 
can be executed on the mobile device itself.  

First consider applications that incur high computation 
costs. The associated communication cost can be low or 
high. For low communication cost applications, the 
relatively small size of RPCs (up to about 30 KB) allows 
user to offload RPCs with minimal transfer time and low 
power overhead. However, their computation is complex 
and resource intensive thus favoring remote execution. 
Applications requiring complex mathematical calculations 
for e.g. finding prime numbers [11], encrypt-decrypt 
applications fall under this category. Second type of 
applications in high computation cost category are those 
with high communication cost e.g. video editing which 
consists of RPCs of the order of hundreds of kilobytes and 
also incurs high computation overhead. For such 
applications, network parameters: bandwidth and latency 
play critical role in scheduling decisions. Availability of 
good network conditions will promote offloading of RPCs.  

Second set consists of moderate computation cost 
applications. Again, the associated communication cost can 
be low or high. Applications such as face recognition, 
augmented reality are considered to be high communication 
cost and medium computation cost applications having 
RPCs’ size over about 30KB and small server execution 
time of the order of tens of milliseconds. Distributed voice 
recognition [12] and secure communications [13] are good 
examples of applications having low communication cost 
and moderate computation cost.  

We considered three different networks: Poor, Average 
and Good. Corresponding data used in simulations is given 
in the following table: 

TABLE I 
NETWORK PROPERTIES 

Parameters Poor 
Network 

Average 
Network 

Good 
Network 

Bandwidth Range 
10-100 
KBps 

50-500 
KBps 

100-1000 
KBps 

Latency/RTT 
100 ms /  
200ms 

25 ms  /  
50ms 

10 ms  / 
20 ms 

Network Idle Power 
Overhead 

0.3 W 0.0005 W ~0 W 

Power Upload 
Overhead 

2 W 0.2 W 0.1 W 

Power CPU Idle 1.5 W 1.5 W 1.5 W 
Computation Overhead 0.1 W 0.1 W 0.1 W 
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TABLE II 
RUNTIMES FOR GOOD NETWORK 

 
Application 

Runtime (in Seconds) % Improvement in Runtime over 
Local MAUI MARS PEAS MAUI MARS 

LM 2.52 0.3049 0.2903 0.2898 4.952443 0.172236 
LH 100 2.4276 2.3036 2.3015 5.194431 0.091162 
HM 5.04 1.363 1.107 1.05 22.96405 5.149051 
HH 37.5 3.83563 3.49029 3.47826 9.317113 0.344671 

 

TABLE III 
RUNTIMES FOR AVERAGE NETWORK 

 
Application 

Runtime (in Seconds) % Improvement in Runtime over 
Local MAUI MARS PEAS MAUI MARS 

LM 2.52 0.6011 0.6159 0.514 14.4901 16.54489 
LH 100 5.21 4.68 4.67 10.36468 0.213675 
HM 5.04 2.261 1.966 1.773 21.58337 9.816887 
HH 37.5 7.78747 6.44144 6.33168 18.694 1.703967 

 

TABLE IV 
RUNTIMES FOR BAD NETWORK 

 
Application 

Runtime (in Seconds) % Improvement in Runtime over 
Local MAUI MARS PEAS MAUI MARS 

LM 2.52 2.52 2.52 1.42 43.65079 43.65079 
LH 100 18.11 24.67 16.61 8.282717 32.67126 
HM 5.04 5.04 5.04 3.867 23.27381 23.27381 
HH 37.5 35.9955 24.4451 18.185 49.4798 25.60881 

 

TABLE V 
ENERGIES FOR GOOD NETWORK 

 
Application 

Energy (in Seconds) % Improvement in Energy over 
Local MAUI MARS PEAS MAUI MARS 

LM 4.032 0.48355 0.48006 0.47918 0.903733 0.18331 
LH 160 3.8602 3.8671 3.8636 -0.08808 0.090507 
HM 8.064 2.203 1.858 1.767 19.79119 4.89774 
HH 60 6.11904 5.80735 5.86837 4.096558 -1.05074 

 

TABLE VI 
ENERGIES FOR AVERAGE NETWORK 

 
Application 

Energy (in Seconds) % Improvement in Energy over 
Local MAUI MARS PEAS MAUI MARS 

LM 4.03326 1.003 1.051 0.889 11.3659 15.41389 
LH 160.05 8.677 8.216 8.206 5.428143 0.121714 
HM 8.066 3.824 3.411 3.124 18.30544 8.413955 
HH 60.01875 13.1432 11.4265 11.2567 14.35343 1.486019 

 

TABLE VII 
ENERGIES FOR BAD NETWORK 

 
Application 

Energy (in Seconds) % Improvement in Energy over 
Local MAUI MARS PEAS MAUI MARS 

LM 4.788 4.788 4.788 4.375 8.625731 8.625731 
LH 190 57.82 64.545 53.277 7.857143 17.45759 
HM 9.576 9.576 9.576 13.527 -41.2594 -41.2594 
HH 71.25 70.5795 60.1409 65.0841 7.786114 -8.21936 
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One can easily relate these networks to low bandwidth 
3G, average Wi-Fi and improved Wi-Fi or 4G respectively. 

We borrowed device, network and application data from 
[8]. We used this data and extended it to formulate above 
mentioned abstractions of devices, networks and 
applications keeping them realistic. An application consists 
of some number of independent tasks each having 6 
sequentially dependent stages (linear multistage model 
[11]). 

All the simulation results shown here are compared with 
best static partitioning MAUI and the previous best 
dynamic, adaptive mobile installed scheduler, MARS. 

B. Results 

Based on our simulation methodology, all four sets of 
applications were simulated over diverse networking 
conditions modelled as three networks namely good, 
average and poor. Comparisons are drawn with prevalent 
methods such as local execution, best static portioning 
(MAUI) and MARS for execution time and energy 
consumption. Consistency is maintained in simulations with 
respect to device’s computational power and computational 
load for each algorithm and over different networks. In 
subsequent sections, network based simulation results 
shown in tables II-VII are discussed. 

1) Good Network: The results obtained by simulating  
applications over good networks (tables II and V) exhibit 
interesting observations. The convergence in performance 
and energy savings of different scheduling algorithms is 
observed. The explanation lies in the fact that remote 
execution is facilitated by good networking conditions. 
Therefore, we could assert that most of the RPC’s are 
scheduled for remote execution. However, in high 
communication cost and medium computation cost 
applications, increased use of local CPU provide PEAS 
23% speedup gain over MAUI. The limited use of mobile 
CPU in other applications results in marginal speedup gain 
for PEAS. 

2) Average Network:  In average networks, due to low  
offload power overhead, energy consumption largely 
depends upon total runtime of the computational task. It 
results in making remote execution an energy efficient 
choice for the execution of RPCs. Therefore, both 
performance gain and energy savings favor offloading 
(tables III and VI). PEAS, being performance centric 
scheduler algorithm, also becomes energy efficient due to 
low offload power overhead. Speed gain up to 16% and 
22% is observed for PEAS over MARS and MAUI 
respectively. Similar trend is followed in energy savings; 
varying up to 15% and 18% for PEAS over MARS and 
MAUI respectively. 

3) Bad Network: PEAS is primarily designed for  
performance factor which is being exemplified by speedup 
results (tables IV and VII) shown by PEAS over MAUI (up 
to 50% speedup) and MARS (up to 44%). It is apparent 
from above results that PEAS prevails in poor networking 
conditions by fully utilizing available resources. These 
outcomes also indicate that PEAS is best suited for 
performance centric applications which require higher 
refresh rates such as video games. As discussed earlier, 

PEAS being primarily designed for speedup its energy 
consumption needs to be scrutinized due to presence of 
high upload network power over-head.  

In high communication and medium computation cost 
applications, high energy consumption is observed. This is 
easier to understand as high communication cost would 
incur high energy consumption due to upload network 
power overhead. Also, medium computation cost would not 
allow PEAS to draw maximum benefits from remote 
execution resulting in extensive battery usage. However, 
except for high communication cost and medium 
computation cost case energy results are not drastically 
deteriorating in nature. Furthermore, in some applications 
energy savings up to 17% and 9% is observed for PEAS 
over MARS and MAUI respectively.  

To satiate these needs, we devised battery usage modes 
namely high performance mode and power saver mode 
based on common prevalence of these modes in computers, 
laptops etc. Mode can be manually chosen by user or 
preconfigured in design. The user chooses the available 
battery mode catering to his/her need. High performance 
mode is PEAS algorithm only. Power saver mode requires 
high energy savings without catering to performance 
requirements. Selection of this mode activates energy aware 
offloading. This is easily implemented with insertion of just 
one more check in scheduling algorithm before every 
offloading decision. It should be noted that we performed 
all simulations assuming high performance mode. 

IV. CONCLUSIONS 

This work introduces PEAS, a single metric based, 
extremely light-weight and online scheduler for multi-
threaded systems. The scheduler is easily extendable to 
multi-core clients. Our simulation results show that PEAS 
gives up to 50% better performance and energy savings 
over MAUI and MARS. The fact that PEAS maintains its 
superiority over wide range of applications and networks is 
also established from simulations. We also demonstrated 
converging trend in results of all schemes with 
improvement in network.  
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